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LETTER TO THE EDITOR 

Finite size effects in spin glass overlap functions 
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Department of Theoretical Physics, The University, Manchester M13 9PL, UK 

Received 10 April 1985 

Abstract. The Parisi overlap functions P ( q )  and P ( q , ,  qzr q 3 ) ,  and the function II( Y ) ,  
which measures sample to sample fluctuations, are calculated for the one-dimensional Ising 
spin glass in the temperature range in which the correlation length is of the order of the 
length of the system. The functions P ( q )  and II( Y) are strikingly similar to those of the 
SK model but the topology of the space of states is not ultrametric. 

In recent years great progress has been made towards a complete understanding of 
spin glasses at the mean-field level, i.e. in the model of Sherrington and Kirkpatrick 
(SK, 1975). The SK model is characterised by the existence of many pure states (Parisi 
1983) whose free energies are close to the minimum free energy and which behave as 
independent random variables with an exponential distribution (MCzard et al 1985). 
More precisely, all the pure states have in the thermodynamic limit the same free 
energy per spin (limN.+a F u / N ) .  The corrections to the free energy per spin ( f u / N )  
act as independent random variables. The probability associated with each state is 

f v  

Strong correlations exist between the site magnetisations my (= (S i )  in state a) of 
different pure states. These can be investigated with the Parisi overlap functions (Parisi 
1983, MCzard et al 1984a, b), the simplest of which is 

qOI0 is the overlap, N-’  Xi my mf. We shall denote a thermal average by ( ) and averages 
over bonds JU by (-). P ( q )  = P, (q )  is found in the low-temperature phase at zero 
field to be of the form 

(3) P ( q )  = ( Y / 2 ) [ a ( q - q E A ) + S ( q +  q E A ) I +  @(q) ,  
where 

y =  r Y = X  P’, q E A  = N - ’  1 ( 
OI I 

P( q )  is a smooth function (i.e. free of delta functions), such that P( q )  = P( -q ) ,  which 
vanishes for ( q [  > q E A  (MCzard et al 1984a, b). The distribution function II( Y) has 
been calculated (MCzard et al 1985, Derrida and Toulouse 1985). 

Higher overlap functions such as 
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are of interest as P ( q l ,  q2,  q3 )  = P,(q , ,  q2, q3)  reveals the existence of ultrametric 
topology in the space ofthe pure states. It is zero unless )qll = lq21 = 1q31 or lqll > Iq2\ = \q31 
(plus permutations). 

In practice, P, (q )  and P,(q , ,  q2, q3 )  are calculated without reference to pure states 
from their equivalent definitions ( Parisi 1983) 

where the thermal average is taken with the doubly replicated Hamiltonian H = 
H { S ! }  + H {  Sf}, and 

with the thermal average taken with the triply replicated Hamiltonian H =  
H {  Si'} + H {  S f }  + H {  S?} .  

At the present time it is unclear whether ultrametric topology or a non-trivial P (  q )  
exists in three-dimensional spin glasses. It is not yet certain whether there is even a 
finite temperature phase transition (McMillan 1985, Bray and Moore 1985, Ogielski 
and Morgenstern 1985, Bhatt and Young 1985). These numerical studies do not fully 
rule out the possibility that the lower critical dimension of Ising spin glasses is three 
with a phase transition temperature T, = 0. 

Very little is currently known about P (  q )  and P (  q l ,  q2, q3)  in three-dimensional 
spin glasses. As these functions are not readily accessible to experiment they will 
probably have to be determined by numerical methods. Numerical work is always 
affected by finite size effects so we thought it would be useful to examine finite size 
effects on P ( q )  and P ( q , ,  q2, q3)  in the context of exactly soluble models. 

The soluble models studied were the one-dimensional Ising ferromagnet and the 
one-dimensional Ising spin glass. Their Hamiltonians are 

with J, = J for the ferromagnet while for the spin glass the { J , }  are drawn from a 
continuous distribution PB(J), such that PB(J) = P B ( - J )  and PB(0) # 0. Of course, 
neither of these models has a finite temperature phase transition. However, they do 
have a correlation length 5 which grows to infinity as the temperature T is lowered 
towards zero, i.e. T, = 0. For finite values of a (  = L/,$) ,  but for L + 00 (L, the linear 
dimension of the sample, equals N in one dimension), we found rich structure in both 
P ( q )  and P ( q , ,  q2, q3)  (which disappears as a +CO). While the detailed form of these 
functions obtained below is specific to one dimension (and our results are modified 
just by going to periodic boundary conditions?) our calculations suggest that finite 
systems with a zero-temperature phase transition will generally have interesting correla- 
tions between low-lying states. Thus complex forms for P ( q )  and P ( q , ,  q2, q3)  due to 
finite size effects should appear in certain versions of the travelling salesman problem 
(Kirkpatrick and Toulouse 1985), the two-dimensional random field Ising model, and 
two- (and possibly three-) dimensional spin glasses. It would also seem probable that 
finite size effects give non-trivial structure to the overlap functions at a finite temperature 
phase transition. 

t Toulouse (1983) has discussed P ( q )  for ferromagnetic and antiferromagnetic king rings 
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We begin by calculating P ( q )  for the spin glass case using the definition of ( 5 ) .  
To this end we introduce the function F,(y) ,  such that 

im 

and 

F,(y)  is easily found using transfer matrices 

(11) 
i = l  

N 

F,(y) =Tr n T,(S:,  S f ;  S:+, ,  S?+,;  y) T,(S:,  Sf; S:+l, Sf,,; 0). 
i = l  

The denominator in (11) equals 4 II;"=, (2 cosh pJi)' .  At this stage it is convenient to 
perform the bond average to calculate F(y)  = F,(y) .  Let 

f = (T/4 cosh' p J i )  = Sexp i y N - ' ( a i  + ~ ~ + ~ ) ] [ l +  tanh2 pJaiuitl3,  

where ui = S : S f .  We shall always work in the very low temperature region where 

tanh2 p J  = 1 - sech2 p J  = 1 - 2 TP,(O) as T+O 

= 1 - 2 a N - ' ,  with LY = NP,(O)T (13) 

We take a to be of order one which implies that the temperature itself is of order 1/ N. 
Then 

where, to O( 1/ N )  

Hence 

F(Y)  = 5  c [~fi(~ll~l~(All~N+1)+~2N(~ll~')(~*l~N+l)I. (16) 

A , , 2 =  ~ - N - ' [ L Y * ( L Y ~ + ~ ~ ) " ~ ] .  (17) 

uI~'N+l 

I 
The eigenvalues A, and A 2  of T are 

By finding the eigenvectors (a(A,) and (a\A2) and using the identity 

lim ( 1  + x N - ' ) ~  = ex 
N - w  

one obtains 
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The calculation for the ferromagnetic case is even simpler and  exactly the same 

(19) 

i.e. work on a temperature scale T -  J / log  N. In other words, finite size corrections 
will decrease logarithmically slowly with increasing system size in the ferromagnetic 
case (and  a similar situation would be expected for the case of other systems at  their 
lower critical dimension). Note that for both the ferromagnet and  the spin glass the 
temperature scale is so low that thermally activated hopping between spin states will 
vanish when N + CO with LY finite. 

result is obtained provided one redefines LY as 

tanh' PJ = 1 -2aN- '  

It is revealing to express LY in terms of L/[. For the ferromagnet 

(S,SJ) = (tanh PJ)"" = exp(-li - j l / ( ) ,  (20) 

where 6 = -(ln tanh P J ) - ' .  Hence using (19) one sees that as N -03, LY = L/(. For 
the spin glass, a correlation length can be defined from 

(S,SJ)' = (tanh' PJ)I'-''= exp(-li - j I / t ) ,  (21) 

so 5 = -(ln tanh' PJ)-'  = L / 2 a  as N + 03, so LY = L/25. O n  scaling grounds one would 
expect for all systems at or below their lower critical dimension that P ( q )  could be 
expressed as 

P ( q )  = P ( q ,  L / O  (22) 

and (18) demonstrates this explicitly. 

(1981) in a different context. The result is 
The integral required to extract P ( q )  from F ( y )  has been performed by Bruce 

where x = a ( 1  -q2 ) ' ' 2 , -Zo(x )  and Z,(x) are Bessel functions, and 8 is the usual step 
function. For a + 0, P ( q )  is a constant equal to a / 2 .  As LY +CO, P ( q )  + 6 ( q ) ,  the 
expected trivial result. Equation (23)  is strikingly similar to ( 3 ) ,  which gives the form 
of P ( q )  for the SK model. 

There is a simple way of understanding (23). We consider the ferromagnetic case 
only (although a similar argument is possible for the spin glass). The probability that 
the ferromagnet is in one of its two ground states (i.e. has all its spins up  or down) is 

f eNPJ/(2 cosh PJ)N =+e-"". 

Using the definition of ( 5 )  for P ( q )  one sees that the delta function contribution arises 
from the overlaps of the ground states of each Hamiltonian in the doubly replicated 
Hamiltonian. That F ( q )  + a / 2  as a + 0 arises from the overlap of a ground state of 
one Hamiltonian and  a state containing one 'kink' in the other Hamiltonian. (A  kink 
arises when all the spins are reversed beyond a given spin in the chain.) The probability 
of a kink occurring at a given site is a / 4 N .  The overlap of a kink at site t with a 
ground state is (2t/  N - 1). Summing over all kink positions (and types of kink) gives 
P ( q )  + a / 2  as a + 0. Higher terms in the expression of I'( q )  in powers of a represent 
the effects of inserting more and more kinks. 
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P ( q , ,  q2, q3) can also be found by transfer matrix methods, but it is easier to use 
the kink picture directly 

~ ( q , ,  q2, q3)  = f e - 3 a ' 2 { S ( q l - 1 ) 6 ( q 2 - 1 ) 6 ( q 3 -  1 ) + S ( q l - 1 ) 6 ( q 2 + 1 ) 6 ( q ; + 1 )  

+ ~ ( q , + 1 ) S ( q 2 - 1 ) ~ ( q 3 + 1 ) + 6 ( q , +  1)8(q2+1)6(q3-1)} 

+ a  e-"(1 -e-"/'H6(ql - 1)6(q2-q3)+6(q1+ 1)6(q2+q3) 

+permutations} 

+ A  e-""(1 -e-a/2)2{6(ql + Jq2-  q3) - I ) +  6 ( q ,  - 1q2+ q31+ 1) 

+permutations)+ P ( q , ,  q2,  q3).  (24) 

This result holds for both ferromagnetic and spin glass models with the appropriate 
definition of a. For the ferromagnet the first term in (24) comes from the overlap of 
the ground states, i.e. when in (6) each Hamiltonian of the triply replicated Hamiltonian 
is in its ground state. The second term arises when two of the Hamiltonians are in 
their ground states, while the third term derives from the case when only one is in its 
ground state. The smooth function P( q l ,  q2,  q3)  is determined by the cases when none 
of the Hamiltonians are in their ground states and is a constant equal to a3/64 as 
CY + 0. Equation (24) shows the existence of striking structure in P ( q l ,  q2, q3) but that 
ultrametric topology is absent. The numerical attempts to determine P ( q , ,  q2, q3)  in 
two- and three-dimensional spin glasses (Bachas 1985, Sourlas 1984) are probably 
not of sufficient precision to distinguish appropriate generalisations of (24) from 
genuine ultrametric topology. 

For the spin glass model we can also study the sample-to-sample fluctuations which 
lead to the 'lack of self-averaging' familiar from the SK model (Young et a1 1984, 
MCzard et a1 1984a, b) and the 'random energy model' (Derrida 1980, Derrida and 
Toulouse 1985). A central quantity is the probability distribution II( Y ) ,  where Y is 
the total amplitude of the delta function contributions to P , ( q ) .  These contributions 
are due to 'self-overlap' of states, Y = Z, W t ,  W, = exp(-PE,)/& exp(-PE,.), where 
a now labels microscopic spin states, giving 

Tr e-'OH N 

(Tr i = l  
= fl (1-fsech2p.Ji). Y =  

(Here we have included only one state from each pair of states generated by time 
reversal symmetry.) At temperatures of 0 (1 )  the product over i in (25) reduces Y to 
zero for N + a. However, in the temperature range of interest here, T = 0 ( 1 / N ) ,  
low-lying states, which have excitation energies of O( 1/ N ) ,  have Boltzmann weights 
which are of order unity, but which vary from sample to sample, leading to sample-to- 
sample fluctuations in Y. (Note that this is the same mechanism which leads to 
sample-to-sample fluctuations in the SK model.) 

The average of Y over samples is y = P = { 1 - sech' PJ}" = (1 - a N - ' )  = e-L1 for 
N + CO. In a similar way all the moments of TI( Y )  can be evaluated: 

- yn = e-2,1a = y 2 : n  

1, = lom dx[l - (1 -: sech' x)"]. 

To first order in a (i.e. to first order in 1 - y )  the moments are identical to those 
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obtained from the SK model. It is convenient to work with the variables 1 - Y,  whose 
moments are given by 

(26) 

This agrees with the moments obtained by Mezard e? a1 (1985) for the SK model. Also 
the behaviour of II( Y) for Y + 1 is strikingly similar to that of the SK model. From 
the behaviour of I,, for large positive n, 1, = $ln(2n) + y + O( 1/  n)], where y is Euler's 
constant, one infers 

- ( n - l ) !  
(2n - l ) ! !  

( 1  - Y)" =- a +0(a2) ,  n 2 1 .  

U( Y )  - ( e - Y " / 2 " r ( ~ ) ) ( 1  - Y)LI-l, Y +  1,  (27) 

which agrees with the SK model to leading order in a (i.e. leading order in 1 - y )  
(MCzard e? a1 1985). The physical origin of this 'superuniversal' behaviour for CY + 0 
is that in this limit the space of states may be truncated to the two lowest states. 
Including just the ground state and the lowest energy kink state yields, using the 
distribution P(l.Tmin/) = 2NpB(0) exp( -2NpB(0)IJmi,l) for the strength of the weakest 
bond (Bray and Moore 1984), the closed form expression 

a ( 1  - ( 2  Y - 1)1")* rI( Y )  = + < Y < l ,  
( 1 -  Y)(2Y-1)"2 1+(2Y-1)"2 ' 

and II( Y )  = 0 otherwise. This expression generates both the moments (26) and the 
Y + 1 limit (27) correct to leading order in CY. 

In a future work, we hope to analyse finite size effects in the low-temperature phase 
of a spin glass where T, # 0. 

We thank A D Bruce for bringing his work to our attention. 
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